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The theory of the one-particle Green's function is applied to calculations of 
the ionization potential of interacting atoms which are at large separations. 
Equations for the ionization potential involve terms which relate to Van der 
Waals interactions between separated atoms and long-range interactions 
between an atom and an ion. Numerical calculations of the ionization potential 
of two hydrogen atoms and two helium atoms at large separations are per- 
formed. Applications to the ionization potentials of weakly-interacting Van 
der Waals molecules (NeAr, NeKr, NeXe) are also reported. 
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1. Introduction 

Thanks to the development of photoelectron spectroscopy techniques, we know 
the ionization potentials of many interesting atoms and molecules. To explain 
these, various theoretical methods of calculating the IPs of atoms and molecules 
have been proposed. The most familiar one uses Koopmans'  theorem. Koopmans'  
theorem says that the IP is the absolute value of the atomic orbital energy of an 
atom or the molecular orbital energy of a molecule. But it is an orbital approxima- 
tion and does not consider electron correlation nor orbital relaxation. Another 
familiar method is the ASCF method. The IP, according to the ASCF method, 
is the difference between the total SCF energies of the neutral system and the 
cationic system. The development of digital computers makes it possible to 
perform high level calculations for relatively small molecules. From high level 
CI calculations we can get good total energies for both neutral and cationic 
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systems and the difference of their total energies gives us a reliable IP. But a 
high level CI calculation has a high cost and its physical meaning is not clear. 
Recently, new techniques of  many-body theory have been applied to the calcula- 
tion of IP. One of  them is the Green's function method [ 1 ]. In especial Cederbaum 
et al. have studied the one-particle Green's function vigorously [2] and their 
results on the calculation of  1Ps of various molecules by the Green's function 
are in good agreement with the experimental IPs. The merits of the Green's 
function for the calculation of the IP are: 

(1) We can get the IP directly (the subtraction of total energies is apt to be 
accompanied with non-negligible computational errors). 

(2) Physical interpretation of  the IP is clear. 

(3) The number of two-electron integrals which we need to calculate is much 
smaller than using CI. 

A Green's function calculation costs less than CI and the reliability of its results 
is comparable with that of  CI. In the present work, the Green's function is used 
to calculate the IP of  interacting atoms which are at large separations. Cederbaum 
et al. used perturbative expansions of the Green's function for their calculations 
of the IP of  molecules. We also do this by using atomic orbitals to construct the 
zero-th order Green's matrix. We assume that the distance apart of  the two atoms 
is large enough for exchange effects to be ignored. But the Van der Waals force 
implies that each atom acts on the other and instantaneously polarizes its atomic 
orbitals. We derive the equation for the IP of the system of two polarized atoms 
by using the perturbation formula for the Green's function to second order 
(Sect. 2). Though the truncation of the perturbation is of low order, we can get 
a clear physical interpretation of the ionization process of this system (Sect. 3). 
The equations for the IP involve Van der Waals interaction terms between atoms 
and long-range interaction terms between an atom and an ion. In Sects. 4 and 5 
we examine two simple examples. One is a pair of  hydrogen atoms at large 
separations. The other consists of two helium atoms at large separations. In this 
case the IP has not only long-range interaction terms but also electron correlation 
and orbital relaxation terms of the atom from which an electron has been ejected. 
We also performed CI calculations and compared these results. In Sect. 6 we 
apply our physical interpretation to the IPs of weakly-interacting Van der Waals 
molecules (NeAr, NeKr, NeXe). 

2. One-particle Green's functions 

The Fourier transform of  the one-particle Green's function is determined from 
the equation [3] 

G = Go+ GoEG, (1) 

where Y~ is the self-energy and Go is the zero order approximation. When we 
take a Slater determinant of  Har t ree-Fock orbitals as the ground-state N-electron 
wave function, ek are the Hartree-Fock orbital energies and Go is the diagonal 
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matrix: 

Gokl-- akt (2) 
O) - -  E k " 

Equation (1) is rewritten as 

G -1= Go 1 -E (3) 

and its diagonal and off-diagonal matrix elements are 

G;~ = o) - ek -- Zkk (4) 

O ; , ' = - E k ,  ( k r  (5) 

Now consider the system consisting of two atoms at large separations. There are 
two atoms A and B, and each atom has its Hartree-Fock atomic orbitals 

r  C/a} for A, {q~, s . . . .  , r  r for B, where i + j  = N. If  the distance 
between A and B is large enough for the overlap integrals to be ignored, 

, - . . ,  r  q~7} form an orthonormal basis set. This basis set 
is adapted to the atoms and not to the molecule. We can use these to construct 
the ground-state N-electron wave function 

~ y  = [r r  q~A; ~p~, r . . . .  , r (6) 

We estimate the self-energy Y~ by the usual diagrammatic method, with the 
expansion to second order 

E=E(~)+E ~z~. (7) 

We assume that the distance between A and B is so large that we can regard the 
overlap and exchange integrals between A and B as zero. The first order term 
E(1) is zero because of  the spherically symmetric electron distribution of each 
atom. Also, in the second order terms, the ~o-independent terms become zero 
and we need the w-dependent diagrams. 

The result is as follows (where p, q ~ A and the indices i,j, l stand for doubly 
occupied orbitals and a, b, c for unoccupied orbitals) 

Z(2)(w (2Vpa.-  Vp,~,,)Vq,.,~+ E (2Vp,,~b-- Ve,ba)Vq,ab 
p q \  ) ' ~ -  E ' (8a) 

i , l , a ~ A  O) ~ -  F. a - -  8 i - -  1~. 1 i , a , b ~ A  O) "~  ~'i - -  E a  - -  e b  

2 + E 2Vp~Vqr + E (8b) 
i c A  tO + e c  - -  e i  - -  e j  a ~ A  t o  + e j  - -  e a  - -  e c  ' 

j , c ~ l t  j , c ~ B  

where 

Vok, = (q~ , (1 ) r162  (9) 

In order to get the IPs, we need to find the poles of the G matrix in Eq. (1). 
Here we introduce the assumption, 

- 1  Gkk >> O h  I (k  r l) .  (10) 
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The validity of  this assumption has been discussed by Cederbaum [4] and for 
our examples we confirmed it from the numerical values. The introduction of 
this approximation simplifies the process of finding the poles of the G matrix. 
The G -1 matrix becomes a diagonal matrix and so the G matrix is also diagonal. 
From Eq. (4) the diagonal matrix element of G is 

1 
Gkk - (11) 

09 - -  E k  - -  ~ '  k k  " 

One pole of  G is at 

w(k )  = Sk + Y.kk (12) 

and the vertical ionization potential from the orbital k is 

IPk = - to (k)  = --ek --~kk. (13) 

So --~'kk is the correction to Koopmans'  theorem [5]. In particular the IP from 
the orbital k of  atom A when influenced by atom B is the solution for to of 

(2 vk~.- vko.) v~.  (2 v~iob - V~ib~) V~,ob 
t o=- -ek -  ~ ~ (14a) 

i,l, a c A  to  "~- Ea - -  Ei  - -  CI i , a , b c A  O) "31- E i - -  E a - -  E b 

_ y, 2(Vkco) 2 y. 2(Vk;oc) 2 (14b) 
i c A  to  + S c  - -  Ei  - -  e j  a ~ A  w + Ej  - -  Ea  - -  Ec  

j , c ~ B  j,c~B 

and this can usually be estimated by approximating for to by Sk in the 
denominators so that 

( 2 Vka,,-- Vkat~) Vkaa ( 2 Vk,ab-- Vk,ba) Vk,ab 
IpA=--ek - Y, Jr g (14c) 

i , l , a ~ A  E k  ~ -  Ea  - -  Ei  - -  E l  i,a, b c A  E k  - ~  Ei  - -  Ea  - -  E b  

- -  E 2 ( V k c i j ) 2  E �9 (14d) 
i ~ A  E k  "~ Ec - -  e i  - -  E j  a e A  e k  "~- e j  - -  E a - -  E c 

j , c ~ B  j ,  c e B  

3. Physical interpretation of the IP 

When only atom A exists, the IP from the orbital k of  atom A is described by 
Eq. (14c). The first term is the IP according to Koopmans'  theorem. The second 
and third terms are contributions from one electron and two electron excitation 
configurations. These terms show the effects of  orbital relaxation after the ejection 
of  an electron and of electron correlation inside the atom [6]. Equation (14d) 
gives the extra terms expressing the influence of  atom B on atom A. If  atom A 
and B are at a large separation, they interact through their Van der Waals 
interaction. Now if IA)o and [B)0 are Slater determinants constructed from the 
Hartree-Fock atomic orbitals of  A and B, respectively, the ground-state of the 
A and B system [AB)o is described approximately as the product 

[AB)o = [a)oln)0. (15) 
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The zero-th order total Hamiltonian of the A and B,system, Ho AB, satisfies 

H~B[AB)o = EolAB)o (16) 

H~SlAB)K = EK lAB>K, (17) 

where ]AB)K is an arbitrary excited state of the A and B system and E o and EK 
are total energies of the ground-state and the excited state K of the system. 

The interaction Hamiltonian between A and B is defined as 

--_ZA NA 1 +ZAZ  
n~B rAn rneA r B m  meA ~B rm. RAB ' 

where ZA, Zs arc nuclear charges and NA, N B are the numbers of electrons of 
A, B, so using second order perturbation theory, their Van dcr Waals interaction 
energy is 

AB AB 
AB AB o(aBlHint IAB)K K(aBlHin, ]aB)o 

Evdw = o(AB]Hint lAB}o+ ~ (19) 
K ~O Eo- EK 

and the first is zero because of the spherically symmetric electron distribution of 
each atom. By the use of Eq. (15) we can calculate the second term. One-electron 
excitation configurations in K do not contribute. From the contributions of the 
two-electron excitation configurations the Van der Waals interaction energy to 
second order is 

AB 4(V0-.~) 2 
Ev~w= Y~ (20) 

i , a~A  Ei AC Ej - -  E a - -  8 c " 
j ,  c c B  

Next we think about the state of atom A after an electron has been ejected. We 
define A~ as the cation of A which has a hole in orbital k. A long-range force 
acts between A~ and atom B. The interaction Hamiltonian of the A~ and B 
system is a little different from Eq. (18): 

HA+B ~B Z A NA-1 Z B NA--I NI3 1_.1_+ Z A Z  B 
. . . .  E - - +  Z Z , (21) 

n ~ B  r A n  m ~ A  r B m  m ~ A  n ~ B  rmn  R A B  

where IA~B>o = IA~)olB>o as before. IA~>o can be made from the same Hartree-Fock 
orbitals as for the neutral atom A. Hence, by the perturbation to second order, 
the long-range interaction energy is 

2(Vkj~) 2 4(V0~) 2 (22a) EA~B ,oo = E E 
j ,  cEB e k  + e j  - -  8 k  - -  ge i , a~A  Ei 4- e j  - -  e a  - -  ec  

j ,  c e B  

,~k 2(Ejk~) 2 - ~, 2(Vkja~)2 ~- ~ (22b) 
a E A  E k 4 - E j - - E a - - E c  i ~ A  E i 4 - E j - - E k - - E c "  

j ,  caB  j , c ~ B  

where the first term is the contribution from the one-electron excitation con- 
figurations and the second to fourth terms are contributions from the two-electron 
excitation configurations. Now we define the ground-state energy of atom A and 
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-t- B as EA and EB, and of  the cation A~ as Egg,  then the IP from the orbital k of 
atom A in the A and B system is 

I~A~B'~ -- ( E  A A- EB AS IP A = (E~,k + EB+ ,--,long, + Evdw) 

+ A+B AB 
= ( E A k  - -  E A -4- Elohg - E v d w )  

E A k  - -  E A  = - -  e k  -~  A Ere ix -4- A Er . . . .  

(23a) 

(23b) 

(24) 

where AErejx, AEcorr are the orbital relaxation and electron correlation effects of 
the lone atom A ionization. 

From Eqs. (20), (22a), (22b), (23b) and (24) 

IP~ = - ek + AErelx A- AEcorr (25a) 

+ y, 2(V0kc) 2 2 2(Vkjac)2 . (25b) 
i ~ A  Ei -~  E j  - -  E k - -  E c a ~ A  E k  "~- E j  - -  E a - -  E c 

j , c ~ B  j ,  c c B  

In Eqs. (14a) and (14b) we assumed that w = ek. This means that the truncation 
of  the perturbation to second order and Eq. (14d) are equivalent to Eq. (25b). 
That is, it is shown that the equation of the IP, when one electron is ejected from 
atom A in the A and B system, involves terms which relate to the Van der Waals 
interaction between atoms A and B and the long-range interaction between cation 
A and atom B. In practice, for the calculation of  the Van der Waals interaction 
energy it is known that a perturbation starting from the Hartree-Fock orbitals 
of each atom has slow convergency. Refinement of the zero-th order Hamiltonian 
has been proposed [8] and is used for the numerical calculations in Sect. 5. 

4. Two hydrogen atoms 

The simplest example consists of  two hydrogen atoms at large separations. In 
general, Eqs. (14a)-(14d) are applicable only to the closed shell atom-closed 
shell atom interaction. It is exceptional that it can be used for the hydrogen- 
hydrogen interaction. But as shown later we require ROHF orbitals for the atomic 
orbitals of  hydrogen and Eqs. (14a)-(14d) are valid for these orbitals. In this 
case, each atom has only one electron so there is no electron correlation in each 
atom and the second and third terms of  Eq. (14c) do not exist. The IP from the 
ls  orbital of hydrogen atom A, by Eqs. (14c) and (14d), is 

[p1As = - -Els  + ~ ( V l s l s a s c ) 2  E (V's'sac)2 (26) 
c o B  E l s  "J- E l s  - -  E l s  - -  Ec  a c A  E l s  "[- E l s  - -  Ea  - -  Ec  ' 

c e l l  

where the second and third terms have factor 1 because the orbitals are singly- 
occupied. I f  electron 1 belongs to A and 2 to B then the interaction potential 
between the two hydrogen atoms 

1 1 1 1 
Hint - + - - + - -  (27) 

r i b  r2A r12 RAB" 
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Using the Har t ree-Fock  orbitals of  each hydrogen atom we can get the Van der 
Waals interaction by the perturbation method. 

(v~,~o~) ~ 
EVdW = g �9 (28 )  

a e A  8"1s - ~  I~ls  - -  8 a  - -  Ec  
c o b  

Next, the long-range interaction Hamil tonian between a proton (A) and a hydro- 
gen atom (B) is 

1 1 
/-/long . . . .  + - -  (29) 

raA RAB 

and the interaction energy is 

(~,(2)11/r2Alr 2 (Vls~,,,c) 2 
Elong----- E -- E (30) 

c E B  8 1 s  - -  Ec  c ~ B  E l s  + 8 1 s  - -  E l s  - -  8 c ~ 

where the second equality is due to the spherical symmetry of the l s  orbital of  
atom A. 

Thus Eq. (26) can be described as 

IPL = - 61s -[- Elong - EVdW. (31 ) 

Before ionization, the total energy of this system is 

EA8 = 2e1~ + Evaw. (32) 

After the ejection of an electron, the total energy is 

E~B = els + Elong. (33) 

So the IP is 

A + 
IPls = EAB -- EAB = --els + Elong - Evdw. (34) 

This is equivalent to Eq. (31) and shows the energy conservation law in the 
ionization process. 

We have performed calculations on the IP of two hydrogen atoms at large 
separations. We used the program IMSPAK [9] for the calculations of  the atomic 
orbitals of  the lone hydrogen atom and two-electron integrals of  the basis set. 
The atomic orbitals of  hydrogen were found by Davidson's  R O H F  routine in 
IMSPAK [9, 10]. Huzinaga 's  [10s6p] primitive basis set [11] was used for each 
hydrogen atom. The first term of Eq. (26) is the orbital energy of the ls  orbital 
of  the hydrogen atom and was -0.4999986 hartree. This is very close to the exact 
one, -0 .5  hartree. I f  we know the atomic orbital coefficients and two-electron 
integrals over the basis set, we can calculate the second and third terms of Eq. 
(26). We performed the calculations at the separations of  5, 10, 15, 20 bohr. The 
results are shown in Table 1. Usually long-range interactions between an ion and 
an atom are expanded as 

c4 cg C~- 
Elong = R 4 R 6 R 8 " ' "  (35) 
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T a b l e  1. L o n g - r a n g e  a n d  Van  d e r  W a a l s  i n t e r a c t i o n s  (in ha r t r ee )  o f  t w o  h y d r o g e n  a t o m s  a t  

va r i ous  s e p a r a t i o n s  a 

R 5 10 15 20 

F _ c ~ n g  - 3 . 2 8 3 0 7 E - 3  - 2 . 2 4 9 5 2 E - 4  - 4 . 4 4 4 0 9 E -  5 - 1 . 4 0 6 1 5 E -  5 

C 4 2 .05192 b 2 .24952 b 2 .24982 b 2 .24984 b 

% 91 .1964  b 99 .9787 ~ 99 .9920 b 99.9929 b 

E v d  w - 3 . 1 2 6 8 6 E - 4  - 6 . 4 8 8 4 6 E - 6  - 5 . 7 0 4 3 3 E - 7  - 1 . 0 1 5 0 5 E - 7  
C 6 4 .88572 c 6 .48846 c 6 .49759 c 6 .49632 ~ 

% 75.1762 c 99 .8374 c 99 .9779 c 99 .9584 ~ 

I P  0 .497028 0 .499780 0 .499955 0 .499985 

IAIP[ 2 . 9 7 0 3 8 E - 3  2 . 1 8 4 6 4 E - 4  4 . 3 8 7 0 5 E -  5 1 . 3 9 6 0 0 E - 5  

a Un i t  o f  d i s t a n c e  is bohr .  

b (74 is the  first o n e  in Eq.  

c C6 is the  first o n e  in Eq.  

Basis  set is [ 1 0 s 6 p ]  

(35). % = (c,/2.25) x 100 
(36).  % = (C6 /6 .499026)  x 100 

and Van der Waals interactions between atoms as 

C6 Cs Clo 
F V c l W =  R 6 R 8 Rio " ' '  (36) 

where R is distance between nuclei. 

Reliable values for (?4 and C6 are known. For example,  Koga et al. [12] have 
obtained (C4=2.25,  C6=6.499026705 ". "). In Table 1 at 15bohr  and 20 bohr 
our results, for Ca, are 99.99% and, for C6, 99.9% of  Koga 's  ones. We can see 
that the agreement is very close. The result at 10 bohr shows signs of  the breakdown 
of Van der Waals interaction energy caused by the generation of chemical bonding 
to form the H2 molecule. Similarly, the charge in the cation delocalizes to form 
H~-. At 5 bohr, these effects become more notable. We also performed the same 
calculation using a different basis set. We used Dunning's  [4s/2s] for the s 
orbitals [13] and Huzinaga 's  [5p] for the p orbitals. The results are in Table 2. 

T a b l e  2. L o n g - r a n g e  a n d  V a n  d e r  W a a l s  i n t e r ac t i ons  ( in h a r t r e e )  o f  t w o  h y d r o g e n  a t o m s  at  

v a r i o u s  s e p a r a t i o n s  a 

R 5 10 15 20 

Ei~ng - 2 . 8 8 3 6 6 E  - 3  - 1 . 8 7 3 0 4 E  - 4  - 3 . 6 9 9 8 2 E  - 5 - 1 . 1 7 0 6 5 E  - 5 
C a 1.80229 b 1.87304 b 1.87303 b 1.87304 b 

% 80.1018 b 83.2462 b 83.2458 b 83 .2462 b 

Evdw - 2 . 5 6 2 5 7 E  - 4  - 4 . 8 0 8 2 4 E  - 6 - 4 . 2 2 1 3 3 E  - 7  - 7 . 5 1 3 0 1 E  - 7  
C 6 4 .00402 c 4 .80824 c 4 .80836 c 4.80833 c 

% 61.6095 c 73 .9840 c 73.9858 c 73 .9854 c 

Un i t  o f  d i s t a n c e  is b o h r .  Basis  set  is [ 2 s 5 p ]  

b (74 is t he  first one  in Eq.  (35).  % = ( C J 2 . 2 5 )  x 100 

~ C 6 is the  first one  in Eq.  (36).  % = (C6 /6 .499026)  x 100 
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This time we got 83.24% for C4 and 73.98% for C6 compared  with Koga ' s  results. 
These are far f rom satisfactory. We may conclude  tha t  the accuracy  o f  the electron 
distributions o f  the ground-sta te  as well as o f  the excited state plays an impor tant  
role in the precise calculat ions o f  Van der Waals  and long-range interactions. 

We also pe r fo rmed  full C I  calculations on the two hydrogen  atoms system putt ing 
Huzinaga ' s  [10s6p]  primitive basis set on  each a tom and using the program 
M E L D  [14]. The results are in Table 3. Beyond  15 bohr ,  we got Van der Waals 
interaction energies of  - 0 . 6 E - 6  hartree for 15 bohr,  and of  - 0 . 1 E - 6  hartree 
for  20 bohr.  These are 91.2% and 93.5% o f  the results f rom Eq. (36). We found  
that  a full CI  calculat ion on the two hydrogen  atoms system with a large enough  
basis set could show relatively good  Van der Waals interaction energies. The 
hydrogen  a tom and p ro ton  system has only one electron and there is no electron 
correlation. By U H F  calculat ions we got the long-range interaction energy in this 
system. We got 106% for 1 5 b o h r  and 99.3% for 2 0 b o h r  compared  with the 
values f rom Eq. (35). We define AIP as the difference between the IP  and the 
orbital energy. AIPs are also shown in Table 3. Cor respondence  with the Green 's  
funct ion 's  results is good  for  the 15, 20 bohr  cases. But it is obvious that our  
me thod  is superior  to the CI  method  in terms of  bo th  accuracy and cost, if the 
reference state of  the CI  uses the R H F  molecular  orbitals o f  H 2. 

In  Table 3 the upper  figure in the second row shows the total energy with two 
electrons in the singlet state and the lower figure in the triplet state. It seems that  
the potential  energy curves o f  the singlet and the triplet will meet  at a point  
where the distance o f  two hydrogen  a toms is a little larger than 10 bohr.  Beyond 
this point,  energy degeneracy occurs and the energies o f  singlet and triplet states 
become the same. In  this region, we may see that  chemical  bond ing  has dis- 
appeared  and only the Van der Waals forces remain. This is consistent with our  

Table 3. Full CI calculations of two hydrogen atoms systems (in hartree) ~ 

R 5 10 15 20 

H-H S - 1.0034900 -1.0000044 
Total Energy T -  0.9985760 -1.0000034 -0.9999978 -0.9999973 

Evdw -6.0E - 7 -1.0E - 7 
Evdw from Eq. (36) -6.58E-7 -1.07E-7 
% 91.2 93.5 

H_H + 
Total Energy -0.5240664 -0.5005611 -0.5000466 -0.5000127 

ELong -4.8E - 5 -1.41E - 5 
ELong from Eq. (35) - 4 . 5 1 E - 5  -1.42E-5 
% 106 99.3 

IP 0.479424 0.499443 0.4999512 0.4999846 

]AIP] 2.0575E - 2 5.553E - 4  4.74E - 5 1.40E - 5 

Unit of distance is bohr. Basis set is [10s6p]. ls orbital energy is -0.4999986 hartree 
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results on Van der Waals interaction energies which experience breakdown below 
10 bohr. 

For the IP of  molecules, Gregson and Hall [15] suggested a correction formula 
to the Koopmans '  theorem based on classical electrostatics. They discussed how 
the charge-induced dipole interactions within the cation influenced the IP. Their 
calculations of the IPs of  the chloro-ethylenes are in good agreement with 
experiment. In the present work we can see the same inter-atom dipole effect on 
the IP. It is this term which stabilizes the localized charge on one atom when 
the separations are large. Thus, when the triplet state wavefunction is written 
using atomic orbitals, it is adapted to the charge distribution of the cation and 
ionization follows the atomic Koopmans'  theorem rather than the molecular one. 
Since the atomic orbital can be regarded as the superposition of the symmetric 
and antisymmetric orbitals o f / / 2 ,  the resulting spectral intensities of  these will 
be approximately 0.5. At smaller separations, when exchange terms begin to be 
appreciable, the charge is distributed, as Koopmans '  theorem indicates, according 
to the molecular orbital. In general [2] Koopmans '  theorem is a good approxima- 
tion for valence electrons at equilibrium geometries but this example shows that 
at large separations it breaks down even for valence electrons. 

5. Two helium atoms 

Next we think about the system of two helium atoms, A and B, at large separations. 
The IP of  the ls  orbital of  atom A polarized by atom B is written, using Eqs. 
(14c) and (14d). 

(2 Vlsals,s- Vlsalsls) Vlsalsls (2 Vlslsab-- Vlslsba) Vlslsab 
IpAs = - -  E l s  - -  E Z 

a ~ A  E l s  -}- Ea - -  E l s  - -  E l s  a , b ~ A  E l s  "~ 8 1 s  - -  8 a - -  E b 

(37a) 

2(Vlsclsls) 2 2(Vlslsae) 2 
- Y. Y. + (37b) 

c o b  E l s  "q- Ec  - -  E l s  - -  E l s  a c A  E l s  F~ls - -  ~ a  - -  Ec  " 
c ~ B  

We can divide this into two parts, first the terms relating to atom A only, viz the 
three terms in Eq (37a), and then the remaining terms in Eq. (37b) to both atom 
A and atom B. The first term of  Eq. (37a) is the energy of the ls  orbital of helium 
atom A and the second and third terms are relaxation and electron correlation 
effects for the atomic IP. We calculated this IP by the same method as in the 
previous section except that the orbitals are now doubly-occupied. Again, the 
use of  atomic orbitals implies that the cation has all its charge on one atom. It 
is convenient to consider first a single helium atom and our results on this are 
compared with those from various other methods in Table 4. Compared with the 
experimental value, the IP from the Green's function is as reliable as that from 
the full CI. Next we consider two helium atoms and evaluate the terms of Eq. 
(37b), related to the Van der Waals and long-range interactions. Calculated results 
on these are shown in Table 5. Davison has obtained reliable C4 and C6 coefficients 
for helium atoms. (C4 = 0.692, C 6 -  1.47) [18]. We have obtained, for C4, 72% 
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T a b l e  4. I P  o f  h e l i u m  a t o m  b y  v a r i o u s  m e t h o d s  

( in eV) 
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Ful l  C I  a 24.490 

G r e e n ' s  f u n c t i o n  b 24.463 

K o o p m a n s '  t h e o r e m  c 24.979 

A S C F  d 23.448 

E x p e r i m e n t  24.587 

a Basis  set  is [ 1 0 s 6 p ]  

b Basis  set is [ 1 0 s 6 p ]  

~  

a [17] 

and, for C6, 76% of Davison's  results and these are not very satisfactory. It is 
well-known that the convergence of the perturbation expansion is slow when 
Van der Waals interactions are calculated by using products of  each atom's 
Har t ree -Fock  wavefunctions as zero-th order wavefunctions. We think our poor  
results are due to this reason. A refinement of  the zero-th order Hamiltonian has 
been discussed by FrSman and Hall [7] and developed as the ICSCF method by 
Davidson [8]. We can write down the ICSCF Hamiltonian as 

H = H ; +  H} (38) 

t H F  H F  Ho = HA + H a  + (1 - PA)aA(1 -- PA) + (1 -- P.)aB(1 - PB) (39) 

HI = r-'-A . . . . .  I+ Hhor,:e,+ HAB_(I_PA)o~A(I_pA)_(I_p~)o~B(I_pB) ,  (40)  

where PA is the projection operator 

PA = ~ Ir (41) 
i ~ A  

i = o c c  

Tab le  5. L o n g - r a n g e  a n d  V a n  de r  W a a l s  i n t e r ac t i ons  ( in h a r t r e e )  o f  two  h e l i u m  a t o m s  at  
v a r i o u s  s e p a r a t i o n s  a 

R 5 10 15 20 

ELong - 7 , 9 3 3 0 2 E  - 4  - 4 . 9 8 3 0 2 E  - 5  - 9 . 8 4 3 0 2 E  - 6  - 3 . 1 1 4 3 6 E  - 6  

Ca 0 ,495814 0 .498302 0.498303 0 .498298 
% 71 .6494  b 72 .0090 b 72.0091 b 72 .0084 b 

Evdw - 6 . 9 3 7 2 8 E  - 5  d - 1 . 1 1 6 7 0 E  - 6  d - 9 . 8 0 1 6 0 E  - 8  d - 1 .74466E - 8  d 

C 6 1.08395 1.11670 1.11646 1.11658 
% 73.7381 c 75 .9660 c 75.9497 c 75.9578 c 

IP  0 .896012 0 .898764 0 .898938 0 .898968 

IAIP[ 2 . 9 7 0 3 8 E  - 3 2 . 1 8 4 6 4 E  - 4 4 . 3 8 7 0 5 E  - 5 1 .39600E - 5 

a Un i t  o f  d i s t a n c e  is b o h r .  Basis  set is [10s6p]. IP  o f  h e l i u m  a t o m  is - 0 . 8 9 8 9 8 2 3  h a r t r e e  
b % = ((74/0.692)  X 100 

~ % = (C6 /1 ,47 )  • 100 
d These  a re  twice  the  s e c o n d  t e r m  o f  Eq.  (37b) 
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and 

(~o1~1~o)-- -J,o + 2K,o 

J~ = (q~(1)~o~ (2)]l/r,2]~o~(1)q~ (2)) 

K,o = (~,(1)q~o (2)ll/r,2]~0~(1)q~(2)). 

(42) 

(43) 

(44) 

We can expand the Green's function using this Hamiltonian. The first order 
self-energy is zero as in Sect. 2. The second order self-energy suffers some changes 
and, for the helium atoms, is 

E(p]~(to) = • (2Vealsl~- Vpalsls) Vqalsls (45a) 
a~A tO + e~ -- e l s  -- e l s  - Jls~ + 2 K l s a  

-~- • (2 gPlsab--  Vv"b~)  Vq'sab (45b) 
~,b~A tO + e l s  --  e ,  -- eb + J l ~  + Jamb - - 2 K a ~  - S K ~ b  

2 Vpclsls  Vqclsls  ( 4 5 c )  +Z 
~ B  tO + e~  - e l ~  - e l s  - J l s ~  + 2 K 1 ~  

2 Vpls '~ Vql~a~ (45d) +Y,  
acA tO "-1- 81s --  Ea --  Ec + Jlsa + Jlsc - 2K1 ,~  - 2K1,~  
CCB 

Compared with Eqs. (37a) and (37b) the denominators of Eqs. (45a)-(45d) have 
the extra terms, J~ and K~. Substituting e~ for tO we get the refined interaction 
energies shown in Table 6. We now have, for C4, 90% and, for C6, 95% of 
Davison's results. This confirms that the Hamiltonian of  Eq. (38) is superior to 
the conventional one for the calculation of  inter-atomic energies. It also shows 
that the charge on the ion remains localized on one atom even at a separation 
of 5 bohr. 

We performed SD-CI calculations for two helium atoms and for a helium atom 
and a helium cation at large separations. The results are in Table 7. In this case 

T a b l e  6. L o n g - r a n g e  a n d  Van  d e r  W a a l s  i n t e r a c t i o n s  ( in h a r t r e e )  o f  two  h e l i u m  a t o m s  a t  

v a r i o u s  s e p a r a t i o n s  a 

R 5 10 15 20 

ELong - 9 . 9 4 2 1 4 E  - 4  - 6 . 2 4 1 7 6 E  - 5  - 1 .23294E - 5  - 3 . 9 0 1 0 8 E  - 6 

C 4 0 .621384 0 .624176 0 .624176 0 .624173 
% 89.7954 b 90.1988 b 90.1988 b 90 .1984 b 

Eva w - 8 . 6 8 3 7 6 E  - 5 a - 1 . 3 9 6 2 5 E - 6  ~ - 1 . 2 2 5 5 4 E - 7  ~ - 2 . 1 8 1 4 7 E  - 8  d 

C 6 1.35684 1.39625 1.39597 1.39614 
% 92 .3020  c 94 .9830 ~ 94 .9639 c 94.9755 r 

]AIp[ 9 . 5 0 7 9 5 E  - 4  6 . 1 7 1 9 5 E  - 5  1 .22981E - 5  3 . 8 9 0 1 7 E  - 6  

The  I C S C F  H a m i l t o n i a n  is u sed .  Un i t  o f  d i s t a n c e  is b o h r .  Basis  set is [ 1 0 s 6 p ]  

b % = ((74/0.692)  X 100 

% = ( C J  1.47) x 100 
d These  a re  twice  o f  Eq.  (45d)  
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Table 7. SD-CI calculations of two helium atoms systems (in hartree) ~ 
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R 5 10 15 20 

He-He 
Total Energy - 5 . 7 9 8 8 6 5 9  - 5 . 7 9 8 9 1 3 0  - 5 . 7 9 8 9 1 1 5  -5.7989113 
He-He + 
Total Energy - 4 . 9 0 5 2 5 2 9  - 4 . 8 9 9 1 8 7 1  - 4 . 8 9 9 1 2 2 4  -4.8991129 
IP 0.8936130 0.8997259 0.8997891 0.8997984 
IAIPI 6.35760E -3 2.44701 E -4  1.81501E -4  1.72201E -4  

a Unit of distance is bohr. Basis set is [10s6p]. IP of helium atom is -0.8999706 hartree 

we did not get good values for either the Van der Waals interaction energy or 
the long-range interaction energy. This is because the SD-CI method is not 
accurate enough to calculate such sensitive energies and this CI  method has the 
defect of the size-inconsistency. 

6. IP of weakly-interacting Van der Waals molecules 

The examples considered in Sects. 4 and 5 are difficult to relate to experiment. 
By contrast, Pratt et al. have recently succeeded in measuring experimentally the 
IP of weakly-interacting Van der Waals molecules (NeAr, NeKr,  NeXe) [19]. 
The physical interpretation of the IP discussed in Sects. 2 and 3 can be adapted 
to these systems. Since these are heteromolecules there is no problem due to 
molecular bonding or charge delocalization as arose in the homomolecules.  
Unfortunately, a change of equilibrium structure occurs when an electron is 
ejected and the IP involves effects of structure relaxation. In this case we cannot 
describe a cationic system by orbitals of  the neutral system in its equilibrium 
configuration and an orbital perturbation description which focuses on the orbital 
whence an electron is ejected will break down. We need then to consider the 
Van der Waals and long-range interactions of  the whole system at different 
separations and also the zero point vibrational energies. 

One of the main interests is to know the equilibrium internuclear distance of 
neutral (Rn) and cationic (Re) systems. The R,  for NeAr, NeXe, NeKr  have 
been determined by experiment [20]. But the Rc for these molecules have not 
yet been determined experimentally. Pratt et al. have estimated Re by using IP. 
They have regarded the long-range interaction as only C4/R 4. (C4 = ap/2; ap is 

C 6 / R e  is not negligible. the polarizability of  Ne atom). But we have found that + 6 
We have followed Pratt 's method of calculating Re but included the E~ term. 
Following Siska [25] we d e f i n e  C~=C6+otq/2, where C6 is the dispersion 
constant of  the neutral Ne X(X = Ar, Kr, Xe) molecule and % is the quadrupole 
polarizability of  the Ne atom. 

Thus, the long-range interaction energy of the cationic system is written as 

Elong = E4 c + EC -- C4-~4 C~6. (46) 
Rc Rc 
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Fig. 1. Potential energy profile and ionization process of Ne X (X = At, Kr, Xe) 

Table 8. Constants and results for the potential energy profile of rare-gas Van der Waals 
molecules a 

NeAr NeKr NeXe. 

R~' 6.482 b 6.765 b 7.087 b 
C 6 556 889 c 775 102 c 1 125 626 c 

C + 644 838 c'd 863 051 c'a 1 213 575 r 
C 4 36 267 e 36 267 e 36 267 e 
E~ 7.510 8.085 8.960 
V i b  n 1.75 r 1.62 f 1.62 f 
V i b  c 6. l0 g 4.90 g 4.20 g 
IAIP[ 74.70 h 49.70 h 36.00 h 

E,{ 51.78 35.09 25.25 
E~ 34.78 25.98 22.29 
R~ (this work) 5.145 5.670 6.156 
R~ (Pratt, Dehmer) 4.62 i 5.06 i 5.45 i 
R~ (Hausamann, Morgner) 5.250 5.750 6.50 i 

Unit of energy is meV, distance is bohr 
b [20] 

~ [ 2 0 ]  
d [22] 

~[21] 
f [23] 

g [24] 
h[19] 
i[19] 

[24] 
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The  po ten t i a l  energy prof i le  and  the IP  are shown in Fig. 1. F r o m  this 

AIP -= I P -  IP '  = E ~  + E ;  - E 2  + V i b  ~ - V i b  ~, (47) 

where  E2 is the Van der  Waa l s  in te rac t ion  energy be tween  neut ra l  a toms.  E~ 
and  E~ are  long- range  in te rac t ion  energies  of  the  ca t ion ic  system. Vib  '~ and  Vib  c 

are  the  ze ro -po in t  v ib ra t iona l  energies  o f  the  neut ra l  and  ca t ion ic  molecules .  We  
have  es t ima ted  Rc us ing p u b l i s h e d  data ;  AIP  f rom [19], R ,  a n d  C6 f rom [20], 
crp f rom [21], % f rom [22], V i b "  f rom [23], V i b  c f rom [24]. In  Table  8 we c o m p a r e  
our  resul ts  wi th  the  o thers ' .  H a u s a m a n n  et al. [24] have m a d e  a g o o d  es t imate  
o f  the  po ten t i a l  energy curves by  fitting the  spec t ro scopy  data .  Our  results  are 
c loser  to Hausa rnann ' s  t han  Prat t ' s .  We conc lude  that  it is necessary  to cons ide r  
E~ to es t imate  Re. These  examples  c lear ly  show tha t  the  IP  o f  a weak ly- in te rac t ing  
Van der  W a a l s  molecu le  involves  the Van der  Waa l s  and  the long- range  interac-  
t ions in it, as is d i scussed  in Sects. 2 and  3. 

7. Summary 

We have der ived  an IP  fo rmu la  for  systems which  have two a toms  at large 
sepa ra t ions  by  a G r e e n ' s  fuffction me thod .  The  cor rec t ion  terms to the  a tomic  
K o o p m a n s '  t heo rem fo rmu la  involve  not  on ly  e lec t ron  cor re la t ion  and  orb i ta l  
r e l axa t ion  terms in an a t o m  bu t  also Van der  Waa l s  and  long- range  in te rac t ions  
be tween  a toms.  Ca lcu la t ions  were p e r f o r m e d  for  in terac t ing  pai rs  o f  hyd rogen  
a toms  and  he l ium a toms  at large separa t ions .  F o r  h y d r o g e n  a toms,  we got  very 
re l iab le  results.  We  also showed  that  our  ideas  can be  a p p l i e d  to the IPs o f  
weak ly - in te rac t ing  rare-gas  Van der  Waa l s  molecules .  
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